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Abstract. The pretransitional fluctuations in the normal paraelectric phase have been studied 
by quasi-elastic neutron scattering. They are located at the satellite positions of the incom- 
mensurate phase. Correlation lengths 5,  are given and the dynamics is described by a 
relaxational process. We studied the width of the C2 phonon (soft in K2Se04) as a function 
of q and T.  We re ort a structural neutron analysis of the incommensurate phase. which is 
described by the P is s ( d O )  superspace group. Structural results are connected with dynamic 
ones to explain the mechanism of the normal-incommensurate phase transition. 

F",O 

1. Introduction 

Potassium tetrachlorozincate K2ZnC14 belongs to the extensively studied K2Se04 
family, which presents a prototypical sequence of phase transitions. For K2ZnC14, 
starting from the normal paraelectric orthorhombic high-temperature phase (N) (space 
group Pnma; b < a < c), the crystal transforms to an incommensurate phase (INC) as the 
temperature decreases to T, = 290°C. In the INC phase the wavevector of the static 
modulated distortion isq = ma* with a = S[l - 6( T ) ] ,  where a* stands for the reciprocal 
lattice parameter of the normal phase. The incommensurate parameter 6 decreases 
monotonically with decreasing temperature and jumps to zero at the lock-in temperature 
T, = 130 "C (Gesi 1978), where the crystal reaches the commensurate ferroelectricphase 
(c) (space group Pn2,a; b < a < c) with a tripling of the unit cell along the a axis of the 
N phase. At To = 140 K, K2ZnC14 undergoes another phase transition, and for lower 
temperature (the low-temperature phase) the symmetry is not known. From a dynamic 
point of view, the transition N +  INC at Ti is known to have a displacive character in 
K2Se04, a 22 optic phonon having been shown to soften in the normal phase (Iizumi er 
a1 1977). In Rb,ZnC14 and K2ZnC14 an order-disorder mechanism was proposed (Gesi 
and Iizumi 1984) even though Raman spectroscopists claimed the existence of an ampli- 
tude mode (Quilichini et a1 1982, Sekine et aZ1986) (a specific excitation of the incom- 
mensurate phase within the frame of the soft mode mechanism) in both materials. Even 
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if we consider only the K,SeO,-type compounds (Rb,ZnCl,, K2ZnC14, Rb2ZnBr4), the 
failure to observe soft modes in the normal phases demonstrates differences that prevent 
a unified origin of the incommensurate instability in these materials. Nevertheless, and 
following a suggestion by J D Axe (Axe 1986), we think that a way to understand 
differences and similarities among this limited family is from a structural origin. 

In this paper we present quasi-elastic coherent neutron scattering results and a 
structural study of the incommensurate phase. 

We have already resolved the normal high-temperature phase and the lock-in ferro- 
electric phase. The results obtained have been partly published (Quilichini et a1 1988, 
Quilichini 1986). Nevertheless, those presented here together with those of the incom- 
mensurate phase allow a complete coherent description of the three phases. 

Both inelastic and elastic experiments were performed on single crystals, which were 
grown from aqueous solution by slow evaporation. Usually the sample shape was a 
parallelepiped with faces perpendicular to the main directions a ,  b and c. 

The present paper is organised as follows: in section 2 we analyse quasi-elastic and 
inelastic neutron data; in section 3 we describe the experimental setting and results of 
neutron diffraction measurements; in section 4 we introduce our superspace approach 
of the incommensurate phase; finally in section 5, discussion and conclusions are given. 

2. Inelastic and quasi-elastic neutron scattering 

The quasi-elastic and inelastic neutron scattering experiments were performed on a 
triple-axis spectrometer (4F1) located on a cold source at the Orphee Reactor (Saclay). 
All the measurements were carried out in the ( U * ,  b*)  scattering plane. We workedusing 
the constant k, method, with either k, = 2.662 or 1.55 A-', which leads to an energy 
resolution of 0.25 or 0.04 THz, respectively. 

The 2 3 2 2  mode, soft in K2Se04, was studied in K2ZnC14 around the (040) Bragg 
peak within the temperature range of 20 to 330 "C. As already shown (Gesi and Iizumi 
1984) the dispersion curve of this mode is nearly temperature-insensitive. 

Our data were fitted with a damped harmonic oscillator as the spectral function 
convolved with the instrumental response plus a background. The damping factor of the 
oscillator is r. As seen from figure 1, l- does not depend much on T ,  the r( T )  curve being 
about the same in the three phases, namely the ferroelectric phase, the incommensurate 
phase and the paraelectric phase. From figure 1 one sees that increases with increasing 
value of q.  This is puzzling and we have no definite quantitative explanation for this 
broadening of the phonon linewidth. First we notice that it occurs for values of q that 
are of the same order as or greater than the one that defines the position of the diffuse 
scattering, which will be described below. Secondly, we will show in the next section 
that, when refining structural data in the three phases, we have abnormally large thermal 
parameters, which are certainly related to some dynamic disorder. The question is this: 
How is this disorder related to the phonon linewidth? Following a description proposed 
by Kurzynski and Halawa (1986) we can assume that a coupling exists between a spin 
variable attached to the ZnC1, anion and the phonon variable. In ND4Br it has been 
shown by Yamada et a1 (1974a, b) that such a coupling can be responsible for the 
broadening of the phonon mode. 

In the limited family of compounds, Rb2ZnC1,, Rb2ZnBr4 and K,ZnCl,, it has been 
shown that, instead of the phonon softening, a diffuse scattering located on the satellite 
positions of the incommensurate phase occurs as a pretransitional effect (Andrews and 
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Figure 1. (a) 23-X2 phonon branch in the 
normal (338 "C), incommensurate 
(255 "C) and ferroelectric (30 "C) phases. 
(b) Damping coefficient r of the damped 
harmonic oscillator fit as a function of q (in 
reduced units) in the three phases. In both 
( a )  and (b), k,  = 2.662 A-' .  
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Mashiyama 1983, De Pater and van Dijk 1978, Gesi and Iizumi 1984). This diffuse 
scattering is related to spatial fluctliations of the transition order parameter. We have 
also studied this diffuse scattering above TI in K,ZnCl, in a coherent neutron scattering 
experiment. To give a quantitative description of our experimental results, we use 
the Ornstein-Zernike theory of fluctuations (Landau and Lifshitz 1980), where the 
correlation function for the isotropic case reads kTexp( - r / E ) r ,  and 6 is the correlation 
length, and after Fourier transformation the response function has a Lorentzian profile. 
It is Usual io introduce a relaxation time z; if we use a cluster picture to characterise 
these precursor effects, t is the lifetime of a cluster the size of which is E .  Taking into 
account the orthorhombic symmetry and the scattering plane used for experiments, 
following Dorner and Comks (1977) we can write the response function as 

where Ea and g b  are the correlation lengths along a and b respectively; 2j2 = + E : .  
The wavevector q = (qh, qk,  0) is determined from a satellite position of the incom- 
mensurate phase. 

Both Q and the energy profiles of this diffuse scattering were studied with Tranging 
from 285 to 340 "C and around the reciprocal point (1.32,2, 0), which corresponds to 
the most intense satellite of the experimental scattering plane. To work out the static 
part of the spectral function, elastic Q scans were performed in both a* and b* directions 
using an incident k, equal to 2.662 A-'. The energy resolution (0.25 THz) was large 
enough to integrate in energy the quasi-elastic scattering. The observed experimental 
profiles are well fitted with a Lorentzian scattering function convolved with the instru- 
mental response. Its halfwidth at half-maximum (HWHM) L (which is equal to l /E)  is 
studied as a function of temperature. Figure 2 shows the L2 temperature dependence, 
which is proportional to (T  - TI) with T, = 291 "C. This linear behaviour is in agreement 
with results of the Landau analysis of fluctuations, which leads to E' proportional to 
( T  - TI)-*, We observed that Ea and g b  do not decrease steeply as T increases. It is 
noticed that the crystal deteriorates for temperatures higher than T = 320 "C, which 
prevents good fitting of the data above this temperature. We note also that there is no 
pronounced anisotropy among these spatial fluctuations. 

To determine the relaxation time, energy scans were performed with k, = 1.55 A-1. 
Profiles are well fitted by a Lorentzian function with a HWHM of 0.04 THz at 300 "C, 
0.044 THz at 320 "C and 0.058 THz at 334 "C. This fairly large energy distribution leads 
to short values of the relaxation time z (t = 4 x lo-', s at 300 "C). 

3. Neutron diffraction measurements 

This neutron single-crystal experiment was performed at 180 "C on the 5C2 four-circle 
diffractometer (Orphee Reactor, Saclay). At this temperature 6 is small (q6 = 0.32a*) 
and to collect intensities the following procedures have been used. The recriprocal 
parameter a* was divided by a factor of 3. All the reflections ( h ' ,  k, l )  with this reciprocal 
cell were measured. When h' is a multiple of 3, it is a main reflection; if it is not the case, 
it is a satellite reflection. The difference between this calculated reflection and the true 
position of the satellite is negligible. Data were collected with a wavelength of 0.832 A. 
The crystal was mounted in a furnace, which allows temperature fluctuations to be kept 
within k0.5 "C. Some 4300 main and first-order satellite reflections with -9 < h < 9, 
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Figure2. Temperature behaviour of L forqalong 
a* and b* .  L is the halfwidth at half-maximum of 
the Lorentzian fitting function. The experimental 
resolution is of the order of 0.02 A-'.  285 295 305 315 

T 1°C) 

-7 < k < 0, 0 < 1 < 13 were measured using the w-scan method up to (sin 0) /A  = 
0.56A-l. The raw data were corrected for background and for the Lorentz factor. 
Because of the short wavelength, problems arise of contamination of the satellite by 
main reflections, and about 500 reflections were rejected. The absorption being weak 
( p  = 0.63 cm-I), the results were not improved by absorption correction. Some 33 
first-order satellites were removed because of the possibility of contamination by 
second-order satellites. (This point will be explained in the following.) Among the 3800 
remaining reflections, there were 895 non-equivalent reflections with I > 3 4 4  corres- 
ponding to 461 main reflections and 434 first-order satellites. 

The lattice constants in the incommensurate phase determined from 16 centred 
single-cr stal reflections by least-squares refinement of the orientation matrix are a = 
8.96(3) 1, b = 7.30(1) A, c = 12.54(3) A. 

Standard refinements always lead to large thermal parameters in any of the three 
phases. As our aim is a reliable description of structures that can support our dynamic 
studies, we tried, whenever possible, several models. 

For the normal phase (Quilichini 1986), where the space group is Pnma and Z = 4, 
three models have been tested. The first one is based on harmonic anisotropic tem- 
perature factors for all atoms, and converges to R = 0.087 and R,  = 0.047, with 

W F o  - R ,  = W O  - I F C I I  R =  
CFO CWF; 

The weighting scheme was w = unit weight for all reflections. 
In the second model, the so-called 'anharmonic' model, the temperature factors of 

the C1 atoms were expanded up to fourth order using a formalism based on the Gram 
Charlier expansion of structure factors (Zucker et a1 1983). This refinement converged 
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Table 1. Anisotropic temperature parameters (A’ x 10‘) in the normal phase at 315°C. 
Model 1, Pnma harmonic potential; model 2, Pnma anharmonic potential; model 3, Pnma 
harmonic split-atom model. They correspond to 

Model U,, 

K(1) 1 
2 
3 

K(2) 1 
2 
3 

Zn 1 
2 
3 

Cl(1) 1 
2 
3 

Cl(2) 1 
2 
3 

Cl(3) 1 
2 
3 

Cl(4) 3 

860( 66) 
864(35) 
862(42) 

833(58) 
863(30) 
822(36) 

593(26) 
614(15) 
585(17) 

621(22) 
700(27) 
625(14) 

945(30) 
1077(35) 
977(20) 

1786(28) 
1827(34) 
1865(160) 

1305 (40) 

1668(98) 
1587(60) 
1566(77) 

1445(95) 
1442(50) 
1435(62) 

734(31) 
736( 17) 
7 18( 20) 

2986(73) 
2558(45) 
1434(78) 

3109(66) 
2671(42) 
1541 (77) 

937( 18) 
954( 19) 
940(67) 

748(37) 

2154(99) 
21 55( 64) 
2098(81) 

872(66) 
890(40) 
835(43) 

657(28) 
683(16) 
659(18) 

16 13( 40) 
1625(25) 
16 16( 26) 

883(25) 
856( 13) 
857(16) 

2268(33) 
2116(30) 
1356(70) 

1429(65) 

1561 
1535 
1508 

1050 
1065 
1030 

661 
677 
654 

1740 
1628 
1222 

1645 
1534 
1125 

1664 
1632 
1375 

1161 

to R = 0.037 and R, = 0.027, and the coeficients of the anharmonic temperature factors 
were then used to calculate the corresponding probability density function (PDF) of the 
C1 atoms. 

Finally in the third description a ‘split-atom’ model was attempted because of large 
thermal amplitudes for most atoms. This model was successful when only the C1 atoms 
were split with an equal occupancy of 0.5, which is required from the symmetry. This 
refinement converges to R = 0.041 and R, = 0.027. The main harmonic parameters 
obtained with these three models are given in table 1. Except for those of the Zn atoms, 
these values are anomalously large and very anisotropic. 

In the ferroelectric phase (Quilichini et a1 1988), the space group of which is Pn2,a, 
a standard refinement using harmonic anisotropic thermal factors (table 2) has shown 
that they are still large, mainly in the b and c directions. Starting from the disorder 
described by the split-atom model in the normal phase, we have calculated the atomic 
positions in the triple unit cell of the ferroelectric phase, assuming it is ordered. Doing 
so, we noticed that the orientation of two ZnC1, units (I and I1 in Quilichini et al 1988) 
agrees with one of the two positions of the split model, while unit I11 is still disordered; 
this explains the larger values of U,; for C1(2), C1(6), Cl(9) and Cl(10). 

For the incommensurate phase, least-squares calculations based on the main reflec- 
tions give only what is usually called the ‘average’ structure. Because it usually has the 
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Table 2. Thermal parameters ( x lo4) in the ferroelectric phase of KZZnC14. Estimated 
standard deviations are in parentheses. 

246( 30) 
320(30) 
477(40) 
309(30) 
284(30) 
369(27) 

222( 14) 
233(16) 
253( 14) 

224( 9) 
201(9) 
264(9) 
311(14) 
460(14) 
359( 12) 
338( 10) 
650( 15) 
834( 18) 
529( 14) 
502( 13) 
530( 13) 

507(40) 
91 l(65) 
826(66) 
260(30) 
398(37) 
289(28) 

261(18) 
222( 17) 
316(18) 

565(15) 
596( 16) 
417(16) 
303(12) 
330( 12) 
292(12) 
670( 16) 
430( 12) 
939(23) 

1031(24) 
543(14) 
513(14) 

535(40) 
907(65) 
941(73) 
498 (40) 
536(40) 
534(30) 

248(17) 
231(17) 
276( 17) 

870(21) 
905(21) 
4 17( 22) 
676( 15) 
523(15) 

1456(32) 
310(12) 
325(13) 
324(14) 
482( 16) 
348( 13) 
412(15) 

429 
713 
748 
356 
406 
397 

244 
229 
282 

553 
567 
366 
430 
437 
702 
439 
468 
699 
681 
464 
485 
- 

same space group as the normal phase, it gives a rough description that is easy to compare 
with this phase. Here we propose in table 3 results of such calculations done using either 
Pnma space group symmetry, non-split ( R  = 0.11, R, = 0.11) and split-atom models 
( R  = 0.09, R, = 0.09), or P r ~ 2 ~ a  space group ( R  = 0.08, R, = 0.047). As expected, the 
thermal parameters are smaller in this phase than in the N phase except for U,, of K(1), 
K(2), C1(1), Cl(2) and U,, of C1(3), Cl(4). Table 4 summarises the atomic fractional 
coordinates obtained for each model and at temperature 180 "C in the incommensurate 
phase and 315 "C in the normal phase. 

Because anharmonic temperature factors (thermal motion) and split positions (dis- 
order) are mathematically equivalent in describing nuclear densities, we cannot dis- 
tinguish between ordered (dynamic disorder due to thermal vibrations only) and 
disordered structures (in addition to thermalvibrations, static deviations form the crystal 
symmetry) and we do not have additional arguments to decide which is the more realistic 
description. 

4. Superspace symmetry 

As pointed out in the introduction, the superspace description is the only appropriate 
one for the incommensurate phase. 
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Table 3. Anisotropic temperature parameters (A’ x lo4) in the incommensurate phase. 
Model 1, Pnma average structure; model 2, Pnma split model; model 3, Pn2,a average 
structure; model 4, Pp‘/F: supergroup. 

1 539(73) 
2 629(40) 
3 562(64) 
4 542(40) 

1 587(68) 
2 561 (32) 
3 589(66) 
4 558(37) 

1 35 1 (27) 
2 358( 15) 
3 364(26) 
4 365( 16) 

1 370(24) 
2 405(15) 
3 363 (22) 
4 347(12) 

1 633(33) 
2 651(42) 
3 649(31) 
4 619(17) 

1 1659( 49) 
2 1227(29) 
3 1514( 95) 
4 732(19) 

2 843(28) 
3 1762( 136) 

1798(198) 
13u4( 62) 
530(94) 

1086(93) 

1185(111) 
1142(48) 
1292( 132) 
698(61) 

596(36) 
529( 16) 
567(41) 
365(21) 

3517(147) 
963(43) 

3632(166) 
709(38) 

3938(164) 
1228(28) 
3899(168) 
796(39) 

669(23) 
604(23) 
776(59) 
594(13) 

494(23) 
622(49) 

134O( 148) 
1273(60) 
1398( 135) 
1291(79) 

539(66) 
550(34) 
634(72) 
596(39) 

453(32) 
434( 16) 
472(32) 
425(18) 

918(41) 
950( 13) 
929(40) 
935(22) 

541(31) 
501(35) 
534(29) 
528( 16) 

24 15(69) 
891(34) 

2405(123) 
828(25) 

962(34) 
2050( 187) 

1226 
1088 
830 
973 

770 
75 1 
838 
617 

467 
440 
467 
385 

1602 
773 

1641 
664 

1704 
793 

1694 
648 

1581 
907 

1565 
718 

766 
1491 

In such a phase the diffraction pattern consists of sharp peaks, which can all be 
indexed with four indices on a set of four vectors bi. This leads to 

Q = hlbl + h2b2 + h3b3 + h4b4 
with 

b4 = 41bl + 42b2 + q3b3. 

The main characteristic of this diffraction image is that it shows a very conspicuous three- 
dimensional lattice B (De Wolff 1974) among the points (hlh2h3h4). These peaks are 
the ‘main reflections’ and they correspond to h4 = 0 with a proper choice of b;. When 
going through the transition phase temperature T,, these reflections remain, whereas 
the ‘satellites’ having h4 # 0 disappear. A reasonable choice for R appears to be the 
reciprocal lattice of the normal phase based on U * ,  b*,  c * .  

Then the already mentioned ‘average structure’ is identical to the direct lattice A 
reciprocal to B. To recover the translational symmetry property, the superspace 
approach introduces a four-dimensional space B‘ so that the satellites are projections 
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Table 4. Atomic fractional coordinates ( X  10‘) of K,ZnC14 in the incommensurate phase 
( T  = 180 “C, ‘average’ structure) and in the normal phase. Model 1, Pnma space group non- 
split model; model 2, Pnma space group split-atom model; model 3, Pn2,a space group. 

180 “C 315°C 

Model xla Ylb  Z I C  Model xla y l b  Z I C  

K(1) 1 
2 
3 

K(2) 1 
2 
3 

Zn 1 
2 
3 

Cl(1) 1 
2 
3 

Cl(2) 1 
2 
3 

Cl(3) 1 
2 
3 

Cl(4) 2 
3 

6339(16) 
6327(7) 
6354(15) 

4960( 13) 
4949(6) 
4951( 13) 

2 1 90( 6) 
2179(3) 
2191 (6) 

9748(6) 
9748(3) 
9749(5) 

3309(6) 
3307(3) 
3310(6) 

3028(7) 
2753(6) 
3052( 16) 

3241 ( 5 )  
3014( 19) 

2500 4143(18) 
2500 4145(7) 
2874(26) 4161 (17) 

2500 8126(9) 
2500 8126(4) 
2462(52) 8125(9) 

2500 4188(5) 
2500 4194(3) 
2500 4191(5) 

2500 4342(5) 
3068(4) 4346(2) 
2606(60) 4348(5) 

2500 5782(5) 
1903(4) 5777(2) 
2535(63) 5782(4) 

55(7) 3325(6) 
184( 11) 3064(4) 
70(25) 3421(15) 

5058(10) 3557(3) 
4840(25) 3238(16) 

1 
2 

6355(11) 
6356(7) 

2500 
2500 

4 11 4( 12) 
41 3 1 (8) 

1 
2 

4942(10) 
4935(4) 

2500 
2500 

8129( 6) 
8129(4) 

1 
2 

2195(4) 
2 194( 3) 

2500 
2500 

4205(4) 
4206(2) 

9768(4) 
9771 (2) 

2500 
2990( 10) 

4288(4) 
4295(2) 

1 
2 

323 1 (4) 
3231(2) 

2500 
2011(9) 

5797(4) 
5798(2) 

1 
2 

1 
2 

3063(4) 
2887(18) 

55(5 )  
204(23) 

3368(6) 
3143(7) 

3202(17) 5070(22) 3571(7) 2 

along (q  + e4) onto the 3~ space B of lattice points of B’. B‘ is based on vectors b,’ with 
b ;  = a * , b ;  = b * , b ;  = c * , b ;  = q +  e4;heree4isaunitvectorperpendiculartoR3.The 
4~ direct lattice A ’ reciprocal to B’ is based on vectors a: such as a: = a, - q e4 (i = 1, 
2,3), U: = e4 and a: b,’ = 6,.  In A’ one introduces a periodic function p ’ ( r ,  t ) ,  which 
has the translation periodicity of A ’. From the construction of p’ it comes out that the 
real 3~ density function of the crystal p ( r )  is nothing other than the section of p’ by the 
hyperplane R3 perpendicular to e4. If x, (i = 1, . . . ,4) are coordinates in A’ ,  then x4 = 
q l x ,  + q2x2 + q3x3.  A new coordinate t = x4 - q lx l  - q2x2 - q3x3 has been introduced 
in A’ that restores the translation symmetry and expresses formally that in a real 
incommensurate structure the phase is arbitrary. For a displacive modulated crystal, the 
atomic positions in the 4 0  lattice for the atom p are 

xf ( % e )  = ff + uf ( i t )  i = l , .  . .,4 

where Xf is the averaged position of the atom in the basic structure A and = q - 3 
+ t .  

The modulation functions up attached to each atom are generally different for the 
different atoms in the unit cell of the basic structure, but with the same vector q ;  they 
are expanded in Fourier series as 
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Table 5. Space-group operations of Pp;r:(aoO), { R ,  E ~ V ,  t}. R ,  U ,  E and t are given for each 
operation. 

z 

xr(X$) = [ak, !  cos(2nmX$) + b”,l sin(2nmX’;)I i = 1 ,  . . . ,  4. 

Because only first-order satellites have been measured, the previous expansion has been 
limited to m = 1. 

We can write 

m = l  

ay,L = ay by,l = br 

and 
3 3 

b$ = qlbp 1 .  

t = l  
a t  = 2 q l a f  

, = 1  

Using the four-indices notation, the following systematic absences have been observed 
in K,ZnCl,: 

(i) (h ,  k ,O,m) ,h  + m = 2n + 1. 
(ii) (0, k ,  I ,  0), k + I = 2n + 1. 
(iii) For ( h ,  0, I, m) reflections, most first-order satellites have their intensity equal 

to zero. Nevertheless, about 10 of them have a small, but non-zero, intensity. 

A first calculation has been made with the superspace group Pp?yf)(dO) cor- 
responding to a non-systematic extinction for these reflections. The agreement was very 
poor and, in particular, the calculated structure factor for these reflections was poor. In 
fact, this intensity seems to come from the second-order satellite ( h  f 0.36,0, 1) when 
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the first-order satellite is at (h * 0.32,0, 1). This point will be discussed in the following 
and it can be concluded on the existence of a systematic extinction for (h, 0,1, m) 
reflections when m = 2n + 1. This gives, following De Wolff et a1 (1981), the 
P'?:: ( d o )  superspace group. In table 5 we have summed up how symmetry operations 
{R,  E 1 U ,  t} act on atomic coordinates; {R,  u}is the usual 3D space group operation, while 
{ E ,  t} transforms the internal t coordinate as t '  = ~t - q - v + t. If we write the position 
of the atom p in the nth unit cell as 

~ ~ , p  = Rn+ + u p  cos[2n(q - Rn.u + t)] + bp sin[2n(q - R n * p  + t)] 

with R " . p  = R" + P, the structure factor is given by 

F(Q)  = Bp exp(2inQ * R " + )  
" @  

BP being the neutron scattering length of the atom p .  Straightforward calculations 
lead to 

F ( Q )  = 

with 

Bp(i)J" exp(2ini.  7)Jpc(2nQ. up)Jp(2nQ b p )  exp[2in(p + p ' ) t ]  
P.P.P' 

Q = T - (p + p ' ) q  = [h - (p' + ~ ) c Y ] u *  + kb* + IC* 
(T is a vector of the reciprocal lattice B). J p  and J p ,  are Bessel functions of order p and 
p'  respectively. 

Main reflections correspond to p + p '  = 0, while satellites of order m (m = 
- ( p  + p ' ) )  are given by 

Fm(Q) = F(h, k ,  1, m) 

= (-l)"Nexp( -2n2m2(t2)) Wp(Q)Bp exp(2in.r -xp )  
P 

x (-i)pJp(2nQ.up)J"+p(2nQ.bp) 
P 

where we usedJ-,-,(x) = ( -l)m+PJm+p(x) and the usual temperature factor Wp(Q) has 
been introduced, 

W p ( Q )  = exp -2n2 U;QtQ,!) .  ( *I 

Our refinements in P'rY: superspace group were based on 

F ~ ( Q >  = F,(T) = N BP w ~ ( Q )  e x p ( 2 i n ~  a P)  

x [Jo(aP)Jo(bP) - W2(aP)J2(bP) + .  ' * + I  
ay = 2nQ u p  b p  = 2nQ - bp 

Fkl(Q) = 2 exp( - 2 ~ ~ ( t ) ~ ) N  Bp Wp(Q) e x p ( 2 n i ~ . P )  

{[Ji(aP)Ji(bP) - 3J3(aP)J3(bP)1('1/aP + i / b )  + . 
for main and first order satellite reflections, respectively. As has been seen previously, 
first-order satellites can be contaminated by second-order ones. In order to prevent this 
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effect, the following procedure has been used. Refinements have been made with all 
first-order satellites such as I > 3a(Z). Then, for these reflections (h ,  k ,  1, k l ) ,  the 
structure factor of the second-order neighbour satellites ( h  f 1, k ,  1, +2) was calculated 
using parameters of the previous refinement. When the increase of the structure factor 
was greater than 20%, the reflection was rejected and the refinement was repeated. 
Using this procedure, 33 first-order satellites were removed. The final R (R,) factors are 
0.071 (0.071), 0.111 (0.128) and 0.085 (0.085) for main reflections, first-order satellites 
and total refections, respectively. Atomic positions, Fourier coefficients of the modu- 
lation functions and thermal parameters are given in tables 3 and 6. The calculated phase 
factor ( t 2 )  is 0.0098(6), which leads to an overall factor of 0.824 for first-order satellites. 

Even though the R factors are not much improved, data are better described with 
this refinement. One can notice that Cl(1) and Cl(2) atoms display the largest amplitude 
of modulation functions along b ,  while the amplitudes for Cl(3) (Cl(4)) atoms are small 
along b and large along a and c. From table 3 one can compare the main U,, values 
calculated with each method of refinement. For K(1), K(2), Zn, C1(1), Cl(2) one sees 
that UI1 and U,, do not depend much on the model, while U,, is very sensitive to it. This 
reflects the importance of taking modulation functions into account, as was already 
obvious in writing the structure factor for the main reflections. 

As in Rb2ZnC14 and Rb2ZnBr4 the thermal parameters of one of the two cations 
(here K( 1)) are much larger than those of the second and even of all other atoms of the 
unit cell. They remain large in the ferroelectric phase. Finally the large values of the 
thermal parameters have partly to be related to the high temperature range where the 
incommensurate and normal phases are observed. 

Table 6. Atomic fractional coordinates of the basic structure ( X  1@), Fourier coefficients of 
the modulation functions ( X  lo4), amplitude ( A ,  x lo4) and phase 4, of the modulation 
functions for K2ZnCI, in the PPG: supergroup. 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 
3 

6345(9) 
2500 
4153( 9) 

4963(7) 
2500 
8 127 (6) 

2188(4) 
2500 
4190(3) 

-2490(3) 
2500 
4353(3) 

331 l(3) 
2500 
5781(2) 

3012(3) 

3314(2) 
57(4) 

0 
-262(32) 

0 

0 
- 362(22) 

0 

0 
- 173(11) 

0 

0 
-866(8) 

0 

0 
-51(15) 

0 

211(6) 
- 107(8) 

15(5) 

0 
31 l(32) 

0 

0 
- 149(26) 

0 

0 
-173(10) 

0 

0 
-62(15) 

0 

0 
-914(8) 

0 

-345(5) 
123(7) 

- 376( 3) 

407 0.888 

391 0.688 

245 0.625 

868 0.739 

915 0.509 

404 0.413 
163 0.886 
376 0.494 
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Table 7. Bond lengths (A) and angles (deg) of ZnClj groups at 180 "C. 

PP??i: 

Pnma* Pn2,a* Min. Max. Adld,,,, (%) 

Zn-CI( 1) 2.197( 8) 
Zn-Cl(2) 2.236(8) 
Zn-CI(3) 2.219(6) 
Zn-Cl(4) 

Cl(l)ZnC1(2) 111.6(4) 
Cl(l)ZnCl(3) 112.3(2) 
Cl(2)ZnCl(3) 106.5(3) 
Cl(3)ZnCl(4) 107.1(4) 
C1( l)ZnCl(4) 
Cl(2)ZnCl(4) 

* Average structure. 

2.198(7) 2.193 2.281 3.9 
2.233(8) 2.234 2.312 3.4 
2.247(15) 2.219 2.316 4.3 
2.211(15) 

11 1.5(4) 
114.2(10) 
103.9( 12) 
107.4( 4) 
110.6(10) 
108.9(12) 

2 . 3  - b ' ? *  A . 
A 0  0 .  

. 
A U A O 0 0  

. U  
I - - . *  0 ? e : %  

", ::eo 
s 0 0 0 

2 2 -  0 O 0 O Z n - C I  

A Z n - C I ( 2 )  

Z n - C I ( 3 )  

2 .1  0 1 0.2 0.L t 0.6 0.8 1.0 

Figure3.Zn-Cl(i) bondlengths(i = 1,2,3)asafunctionofthephasetin theincommensurate 
phase. 

Figure4. Displacements along b of atoms K(1), K(2), Zn, Cl(l), Cl(2) and Cl(3) from their 
mean position in the basic structure. 
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Table 7 sums up bond lengths and angles of ZnC1, groups calculated with each 
refinement. Values obtained in the Pnma space group are comparable to those of the 
normal phase, showing that these groups are not distorted at the transition. In figure 3 
we picture the Zn-Cl(i) bond lengths as a function of phase t ,  while in figure 4 the 
deviation from the mean position in the basic structure is also given as a function of t .  

We should mention here that we have tried the same analysis of the modulated 
ferroelectric phase where superlattice reflections appear for q, = a*/3 for which the 
space group is Pn21a. The observed systematic extinctions written in the four-indices 
notation and using the normal phase lattice, (0, k ,  I ,  0) with ( k  + 1) odd, (0, k ,  0,O) with 
k odd, (h, k ,  0, m) with (3h + m) odd, lead to the superspace group P i i' S .  

The structure factor is written as in the incommensurate phase except that the term 
exp[2ni(p + p ' ) t ]  does not exist any more. The results obtained using the same 
approximations as before are not satisfactory enough to be kept. The main difficulty for 
such a treatment lies in the fact that one unit is still disordered in this phase, which 
prevents a good simultaneous evaluation of thermal parameters and amplitude of 
modulation. 

Pn2 a ,  

5. Discussion and conclusions 

We have shown that the incommensurate phase of K,ZnCl, is described by the same 
superspace group P '~~f r ( a00)  as the incommensurate phases of K2Se04 (Yamada and 
Ikeda 1983), Rb2ZnC1, (Hedoux et a1 1989) and the room-temperature phase of 
Rb,ZnBr, (Hogervorst and Helmholdt 1988). 

From the preceding sections it is shown that satellite reflections and pretransitional 
quasi-elastic scattering are indeed the signature of the transition at TI. 

In the normal phase the diffuse scattering described in section 2 gives the q depen- 
dence of the static order parameter susceptibility. Such diffuse scattering has also been 
shown in RbzZnCl4 above TI via x-ray investigation (Andrews and Mashiyama 1983) 
and in Rb2ZnBr4 with a neutron experiment (de Pater eta1 1978) where the experimental 
results are quite comparable. In the three compounds the diffuse profile is well analysed 
by a Lorentzian function leading to correlation lengths f ,  and E b  that do not exhibit a 
pronounced anisotropy and diverge on approaching T, from above. The present study 
also gives z (at the wavevector qa) calculated from an analysis of the energy profile of 
this diffuse scattering. For temperatures at least 10 "C above TI the relaxation time is of 
the same order of magnitude as the lattice vibrational timescale. Measurements at higher 
resolution would be needed to obtain .(sa) for temperatures close to TI and to work out 
the dispersion of z with q. 

It can be said that any phase transition in this family is due to change of the orien- 
tational ordering of ZnC1, groups accompanied by cationic displacements. 

Two complementary statistical models have been proposed to explain the phase 
diagram features of A2MX,-type materials. The first one is the 'extended anti- 
ferroelectric interaction Ising' model discussed by Yamada and Hamaya (1983) and the 
second one is a double Ising model with nearest-neighbour antisymmetric interaction 
by Kurzynski et a1 (1989). In their model Kurzynski and Halawa (1986) introduced two 
Ising spin variables (a?) ,  which describe the different orientations of the ZnC1, group. 
Within each of the four ay states there should be three substrates which correspond to 
some tilting (described by the Ising p variable) of the tetrahedra. Within this description 
the normal paraelectric phase is ordered in a (adescribes the positions of the tetrahedron 
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with one of the apices up or down the pseudo-hexagonal a axis) and the normal incom- 
mensurate phase transition would then correspond to the partial (one of three anions is 
still disordered) ordering of q ( q  describes the rotation of the anion about the a axis to 
the right or to the left) while ordering in tilt is not achieved. This is supported by our 
diffraction results presented in section 3 ,  which demonstrate the existence of large 
thermal parameters in the three phases (ferroelectric, incommensurate and paraelectric) 
and the disorder of one ZnC14 group every three groups in the ferroelectric phase. Then 
in the normal phase the broadening of the 2 2  phonon mode described in section 2 could 
be due to a complex coupling of this mode with the q and p variables, while the observed 
diffuse scattering would be related to short-range ordering in 9 (here the variable q 
corresponds to the z variable in Kurzynski and Halawa (1986)). 

In K2Se04 this same transition at T, is nearly entirely displacive (Iizumi et a1 1977). 
In this latter compound the 22 mode appears to be a complex motion, which involves 
translational motions in the b direction ( b  < a < c )  of all constituents and librational 
motions of the S e 0 4  groups around the c direction, the amplitude of the translational 
components being much larger than the rotational ones. Above and close to T, the 
inelastic neutron data also suggested the presence of a relaxational motion. To reconcile 
K2ZnC14 and K2Se04 results we have to assume that in these A2MX4 compounds the 
mechanism of the transition at T, involves a coupling between the 22 phonon mode and 
a relaxational mode connected to the reorientation of MX4 groups. A typical example 
of such a coupled system is seen in ND4Br (Yamada et a1 1974a, b) and it has been shown 
that the dynamic behaviour depends strongly upon the ratio of the phonon frequency 
w o  and the flipping frequency z;' of the pseudo-spin variable, which specifies the 
orientation of the MX4 group. If TO' 6 w o  (slow relaxation) the critical behaviour is 
mainly seen in the central component of the phonon response, while for z;' 9 w o  it 
appears in the critical softening of the phonon. Then K2Se04 would correspond to the 
fast relaxation regime while K2ZnCl, would be characterised by a slow relaxation 
regime. 

This unique mechanism would then explain why the atomic displacement pattern of 
the INC phase is described by the same superspace in every compound. 
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